skip to main content


Search for: All records

Creators/Authors contains: "Lugato, Emanuele"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Soil organic matter (SOM) dynamics in ecosystem-scale biogeochemical modelshave traditionally been simulated as immeasurable fluxes between conceptuallydefined pools. This greatly limits how empirical data can be used to improvemodel performance and reduce the uncertainty associated with theirpredictions of carbon (C) cycling. Recent advances in our understanding ofthe biogeochemical processes that govern SOM formation and persistence demanda new mathematical model with a structure built around key mechanisms andbiogeochemically relevant pools. Here, we present one approach that aims toaddress this need. Our new model (MEMS v1.0) is developed from the MicrobialEfficiency-Matrix Stabilization framework, which emphasizes the importance oflinking the chemistry of organic matter inputs with efficiency of microbialprocessing and ultimately with the soil mineral matrix, when studying SOMformation and stabilization. Building on this framework, MEMS v1.0 is alsocapable of simulating the concept of C saturation and representsdecomposition processes and mechanisms of physico-chemical stabilization todefine SOM formation into four primary fractions. After describing the modelin detail, we optimize four key parameters identified through avariance-based sensitivity analysis. Optimization employed soil fractionationdata from 154 sites with diverse environmental conditions, directly equatingmineral-associated organic matter and particulate organic matter fractionswith corresponding model pools. Finally, model performance was evaluatedusing total topsoil (0–20 cm) C data from 8192 forest and grassland sitesacross Europe. Despite the relative simplicity of the model, it was able toaccurately capture general trends in soil C stocks across extensive gradientsof temperature, precipitation, annual C inputs and soil texture. The novelapproach that MEMS v1.0 takes to simulate SOM dynamics has the potential toimprove our forecasts of how soils respond to management and environmentalperturbation. Ensuring these forecasts are accurate is key to effectivelyinforming policy that can address the sustainability of ecosystem servicesand help mitigate climate change.

     
    more » « less